Setup: (X, ρ) , (Y, d) - metric spaces. $C(X,Y) := \{f : X \to Y, f - \text{continuous}\}.$ $\mathcal{F}(X,Y) \coloneqq \{f: X \to Y\}.$

Definition.

Let (f_n) be a sequence, $f_n \in \mathcal{F}(X, Y)$, and $f \in \mathcal{F}(X, Y)$. We say that f_n converges to f pointwise to f, if $\forall x \in X$ the sequence $f_n(x)$ converges to f(x). In other words, $\forall x \in X$, $\lim_{n \to \infty} d(f_n(x), f(x)) = 0$. We say that f_n converges to f uniformly if $\lim_{x \in X} \sup_{x \in X} d(f_n(x), f(x)) = 0$.

Remark.

If $Y = \mathbb{R}$ with usual metric, then uniform convergence is the same as convergence in $\mathcal{F}(X)$! Important example.

 $f_n(x) \coloneqq x^n$

For any a < 1, it converges uniformly on [0,a] to 0.

But on [0,1] this sequence converges pointwise, but not uniformly, to the following function: $f(x) = \begin{cases} 0, 0 \le x < 1\\ 1, x = 1 \end{cases}$

Message: a sequence of continuous functions can converge pointwise to a discontinuous function. But not uniformly.

Theorem.

Assume $f_n(x)$ converge to f(x) uniformly, and each f_n is continuous. Then f is also continuous. Proof.

Let $x \in X$. We need to prove that f is continuous at x.

For this, let us fix $\varepsilon > 0$. Let us find *n* such that $\forall z \in X$: $d(f_n(z), f(z)) < \varepsilon/3$ (we use uniform convergence here!).

The function f_n is continuous at x. Thus $\exists \delta > 0$: $\rho(x, z) < \delta \Rightarrow d(f_n(x), f_n(z)) < \frac{\varepsilon}{2}$.

Now, when $\rho(x, z) < \delta$, we have

$$d(f(x), f(z)) \le d(f_n(z), f(z)) + d(f_n(x), f_n(z)) + d(f_n(x), f(x)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \blacksquare$$

Definition.

 $C_b(X) \coloneqq \{f: X \to \mathbb{R}, f \text{ - continuous and bounded}\}\$ with the uniform metric ρ .

Remark.

If X is a compact metric space, the condition of boundedness is unnecessary. Notation in this case: C(X).

Corollary.

 $C_b(X)$ is complete.

Proof.

The previous theorem means that $C_b(X)$ is a closed subspace of complete metric space $\mathcal{F}(X)$

Series of functions

We now consider functions from a metric space (X, ρ) to \mathbb{R} .

Definition.

We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly(pointwise) if the sequence of partial sums $s_k(x) \coloneqq \sum_{n=1}^k f_n(x)$ converges uniformly(pointwise).

M-test.

Let $\forall x \in X | f_n(x) | \le M_n$ and $\sum_{n=1}^{\infty} M_n < \infty$. Then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly. Proof.

Since $C_h(X)$ is complete, it is enough to show that $s_k(x)$ form a Cauchy sequence. Let us fix $\varepsilon > 0$ and pick $N: m > N \Rightarrow \sum_{n=m}^{\infty} M_n < \varepsilon$.

It implies that
$$\forall k > m > N$$
 and for any $x \in X$ we have
 $|s_k(x) - s_m(x)| = \left| \sum_{n=m+1}^k M_n \right| \le \left| \sum_{n=m+1}^\infty M_n \right| < \varepsilon \blacksquare$

Remark.

It is not a necessary condition! Consider $f_n(x) \equiv {}^{(-1)n}/n$.

Important example: power series

Let (a_n) be a sequence of real numbers. The *power series with coefficients* (a_n) is defined as $\sum_{n=1}^{\infty} a_n x^n$.

With each power series we associate its radius of convergence

 $R = R((a_n)) \coloneqq 1/\limsup \sqrt[n]{|a_n|}.$ Here we assume that $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.

Theorem.

If |x| > R the series $\sum_{n=1}^{\infty} a_n x^n$ diverges.

If r < R the series $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly in the interval [-r, r]. Proof.

Root test.